A New Machine-checked Proof of Strong Normalisation for Display Logic

نویسندگان

  • Jeremy E. Dawson
  • Rajeev Goré
چکیده

We use a deep embedding of the display calculus for relation algebras δRA in the logical framework Isabelle/HOL to formalise a new, machine-checked, proof of strong normalisation and cut-elimination for δRA which does not use measures on the size of derivations. Our formalisation generalises easily to other display calculi and can serve as a basis for formalised proofs of strong normalisation for the classical and intuitionistic versions of a vast range of substructural logics like the Lambek calculus, linear logic, relevant logic, BCK-logic, and their modal extensions. We believe this is the first full formalisation of a strong normalisation result for a sequent system using a logical framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong Normalisation Proofs for Cut Elimination in Gentzen's Sequent Calculi

We deene a variant LKsp of the Gentzen sequent calculus LK. In LKsp weakenings or contractions can be done in parallel. This modiication allows us to interpret a symmetrical system of mix elimination rules ELKsp by a nite rewriting system; the termination of this rewriting system can be checked by machines. We give also a self-contained strong normalisation proof by structural induction. We giv...

متن کامل

On the Strong Normalisation of Intuitionistic Natural Deduction with Permutation-Conversions

We present a modular proof of the strong normalisation of intuitionistic logic with permutation-conversions. This proof is based on the notions of negative translation and CPS-simulation.

متن کامل

On the Strong Normalisation of Natural Deduction with Permutation-Conversions

We present a modular proof of the strong normalisation of intuitionistic logic with permutation-conversions. This proof is based on the notions of negative translation and CPS-simulation.

متن کامل

Formalised Cut Admissibility for Display Logic

We use a deep embedding of the display calculus for relation algebras ÆRA in the logical framework Isabelle/HOL to formalise a machine-checked proof of cut-admissibility for ÆRA. Unlike other “implementations”, we explicitly formalise the structural induction in Isabelle/HOL and believe this to be the first full formalisation of cutadmissibility in the presence of explicit structural rules.

متن کامل

Machine-checked Cut-elimination for Display Logic

Belnap’s Display Logic is a generalised sequent-style framework which is able to capture many different logics in one uniform setting. Its main attractions are twofold: a “display property” which allows every formula to be introduced as the whole of the left or right side of a sequent, and a single cut-elimination theorem which works for all “proper” display calculi. Belnap’s original proof of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 78  شماره 

صفحات  -

تاریخ انتشار 2003